Book

A Simplified Approach

 to
Data Structures

Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda Shroff Publications and Distributors

Edition 2014

Introduction

Sorting algorithms arrange items in a set according to a predefined ordering criterion. The sorting may be ascending or descending

Example:--

Unsorted list $\{20,30,10,50,40\}$
Ascending order $\{10,20,30,40,50\}$
Descending order $\{50,40,30,20,10\}$

Characteristics of algorithms :

- The type and amount of data to be stored.
- Amount of memory space required by sorting algorithm.
- Whether data is in random, partially, or in reverse order.
- Complexity of the sorting algorithm and the ease with which it can be implemented.

Selection Sort

- Selection sort is the sorting algorithm which is in-place comparison sort.
- This algorithm does not use any extra space for sorting the elements of the array.
- The idea behind the selection sort is to find the smallest element in the array and place it with the element at the first position in the array.
- Then, find the next smallest element of the array by starting the search from the 2 nd position to the last position of the array and replace it with the element at the 2 nd position in the array.

Example

Consider the unsorted array A of size 8 shown below

A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]	A[8]
22	35	17	8	13	44	5	28

1st Pass: The smallest element is 5 from $\mathrm{A}[1]$ to A[8], which is at 7th position. Exchange the values at $\mathrm{A}[1]$ and $\mathrm{A}[7]$, which results in the array as :

A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]	A[8]
22	35	17	8	13	44	5	28

6th Pass: The smallest element is 28 from A[6] to $\mathrm{A}[8]$, which is at 8 th position. Exchange the values at $\mathrm{A}[6]$ and $\mathrm{A}[8]$, which results in the array as:

$A[1]$	$A[2]$	$A[3]$	$A[4]$	$A[5]$	$A[6]$	$A[7]$	$A[8]$
5	8	13	17	22	44	35	$\mathbf{2 8}$

7th Pass: The smallest element is 28 from A[7] to A[8], which is at 7th position. No exchange will take place as the element is already at its proper position.

$A[1]$	$A[2]$	$A[3]$	$A[4]$	$A[5]$	$A[6]$	$A[7]$	$A[8]$
5	8	13	17	22	28	35	44

no exchange due to $28<35$ and $28<44$

Selection Sort Algorithm

Algorithm to sort an array ' A ' with ' n ' elements :
Step 1:Repeat Steps 2 to $\mathbf{5} \mathbf{F o r} \mathbf{i = 1}$ To n-1
Step 2: \quad Set Min = A \mathbf{i} i And Flag = False
Step 3: Repeat Step4 For $\mathbf{j}=\mathbf{i}+\mathbf{1}$ To \mathbf{n}
Step 4:
If $\mathbf{A}[\mathbf{j}]<\operatorname{Min}$ Then
Set Min = A [\mathbf{j}]
Set Pos $=\mathbf{j}$ And Flag $=$ True
[End If]
[End Loop2]

Step 5: If Flag = True Then
Set Temp = A [i]
Set $\mathbf{A}[\mathbf{i}]=\mathbf{A}[\mathrm{Pos}]$
Set $\mathbf{A}[$ Pos $]=$ Temp
[End If]
[End Loop1]
Step 6: Exit

Analysis of Selection Sort

Comparison to place the smallest element at first position in first pass is $n-1$. Comparison to place the second smallest element at second position in second pass is $n-2$.
Comparison to place the third smallest element at third position in third pass is $\mathrm{n}-3$ and so on. In the last pass there will be only one comparison for last two elements. Total comparisons will be,

$$
\begin{aligned}
\mathrm{f}(\mathrm{n})= & (\mathrm{n}-1)+(\mathrm{n}-2)+(\mathrm{n}-3)+\ldots \ldots+3+2+1 \\
= & \mathrm{nx}(\mathrm{n}-1) / 2 \\
\approx & \mathrm{O}\left(\mathrm{n}^{2}\right) \\
& \text { Complexity }=\mathrm{O}\left(\mathrm{n}^{2}\right)
\end{aligned}
$$

Analysis of Selection Sort

- Selection sort has same complexity in best case, average case, as well as in worst case.
- This is because the number of comparisons will remain same $(\mathrm{n} *(\mathrm{n}-1) / 2)$ to find the smallest element in unsorted part of the array.
- But, in case of best case, the time consumption in exchanging the element of array will be saved, as no exchange will be required, because the array is already sorted in best case scenario.

Insertion sort

- Insertion is also an in-place comparison sorting technique.
- This algorithm is also known as online sorting method because it sorts elements as it receives the elements.
- Insertion sort is stable as it does not change the relative position of the elements with equal value.
- The idea behind this sorting method is to sort all elements by inserting one element each time from the unsorted part of the list into the sorted part of the list.

Example :--

Consider an unsorted array A of size 8 shown below

$A[1]$	$\mathbf{A}[2]$	$\mathbf{A}[3]$	$\mathbf{A}[4]$	$\mathbf{A}[5]$	$\mathbf{A}[6]$	$\mathrm{A}[7]$	$\mathrm{A}[8]$
22	35	17	8	13	44	5	28

Initially, we consider that the whole list of elements is
divided into two parts i.e. sorted part consisting of the first element of array and the unsorted part consisting of n -1 elements.

$A[1]$	$A[2]$	$A[3]$	$\mathbf{A}[4]$	$\mathbf{A}[5]$	$\mathbf{A}[6]$	$\mathbf{A}[7]$	$\mathbf{A}[8]$
$\mathbf{2 2}$	35	17	8	13	44	5	28

Here, the first element $\mathrm{A}[2](=35)$ of the unsorted part is compared with the element $\mathrm{A}[1](=22)$ in the sorted part of the list.

First pass:

A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]	A[8]
22	35	17	8	13	44	5	28

Now, comparing element $\mathrm{A}[3](=17)$ the first element of the unsorted part of the list, with the elements of the sorted part of the list i.e. $\mathrm{A}[2](=35)$ and $\mathrm{A}[1](=22)$, the element $\mathrm{A}[3]$ will be inserted at the first position.

A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	$A[7]$	A[8]
22	17	35	8	13	44	5	28

Insertion Sort Algorithm

Sorts an array ' A ' with ' n ' elements using the sort technique.
Step1: Repeat steps 2 to 4 for $\mathbf{i}=\mathbf{2}$ to \mathbf{n}
Step2: \quad Set $\mathbf{T e m p}=\mathbf{A}[\mathbf{i}]$ and $\mathbf{k}=\mathbf{i}-\mathbf{1}$
Step3: Repeat While Temp<A[k] AND k>0
Set $\mathbf{A}[\mathbf{k}+\mathbf{1}]=\mathbf{A}[\mathbf{k}]$
Set $\mathbf{k}=\mathbf{k} \mathbf{- 1}$
[End loop]
Step 4: \quad Set $\mathbf{A}[\mathbf{k}+\mathbf{1}]=T e m p$
[End loop]
Step 5:Exit

${ }^{25}$ Analysis of Insertion Sort

The worst case for this sorting technique is, when elements of the list are in the reverse order of the desired one. In the worst case, each element of the unsorted part will be compared with all the elements of the sorted part of the list. Thus, in this case,

To position the $2^{\text {nd }}$ element of the list at proper position, No of comparisons $=1$

To position the $3^{\text {rd }}$ element of the list at proper position, No of comparisons $=2$
To position the $4^{\text {th }}$ element of the list at proper position, No of comparisons $=3$

To position the $\mathrm{n}^{\text {th }}$ element of the list at proper position, No of comparisons $=\mathrm{n}-1$

So, the total no. of comparisons in the worst case.
$\mathrm{f}(\mathrm{n})=1+2+3+4+5+6+\ldots .+(\mathrm{n}-2)+(\mathrm{n}-1)$

$$
\begin{aligned}
& =\mathrm{n} *(\mathrm{n}-1) / 2 \\
& =\mathrm{O}\left(\mathrm{n}^{2}\right)
\end{aligned}
$$

Thus, for the worst case the complexity of the insertion sort is $\mathrm{O}\left(\mathrm{n}^{2}\right)$. The best case for this algorithm is when elements are already sorted. Then the complexity will be $\mathrm{O}(\mathrm{n})$. however, for the average case complexity will be $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Merge sort

- Merge sort is one of the best sorting techniques which is based on the divide and conquer strategy.
- The Merge Sort reiterates on the list of elements by dividing it into smaller portions and sorting each sub-portion.
- The Merge Sort divides partitions in half by using the formula:

Mid=(Lower+Upper)/2
Here, Lower is the lower index and Upper is the upper index of array.

- Merge Sort reiterates on both the newly formed partitions by dividing them in half and continue the process.
- This process of dividing stop when the partition size reaches to one item.
- At this point it has created many one-item lists. Any one-item list is naturally in sorted order.
- The next step is to merge these one-item lists together for creating the sorted list.
- To combine two sorted lists, the merge sort compare successive pairs of elements, one from each list.
- If the list A has any element < than all the elements of list B, then it will be chosen to be append to the aggregated list or vice versa.
- And when all the elements of one list are added to the aggregated list then all the remaining elements of other list will be append directly to the aggregated list.
- This merging process takes at least ($\mathbf{n} / \mathbf{2}$) comparisons but not more than ($\mathbf{n} \mathbf{- 1}$) comparisons.
- Merge Sort repeats the process of combining sorted sub-lists into larger sorted sub-lists until all have been successfully integrated into a single sorted list.

30 Example

To understand the concept and working of merge sort algorithm, lets us consider an unsorted array \mathbf{A} of size 8 :
41,35,17,8,13,44,5,28

$A[1]$	$A[2]$	$A[3]$	$A[4]$	$A[5]$	$A[6]$	$A[7]$	$A[8]$
41	35	17	8	13	44	5	28

Algorithm start splitting array \mathbf{A} into sub-arrays $\mathrm{A}[1: 4]$ and $\mathrm{A}[5: 8]$ of size four each as shown below:

Now the sub-arrays $A[3: 3]$ and $A[4: 4]$ are merged to produce sorted array $\mathrm{A}[3: 4]$ of size two. At this stage array can be pictorially shown as:

${ }^{37}$ Algorithm of Merge Sort

Following Merge Sort algorithm sorts an unsorted list of elements using recursion and function MergeLists().
Algorithm: Sorts an array $A[L: U]$ using an auxiliary
array 'B'
MergeSorting(Lower, Upper)
Step1:If Upper>Lower Then
Step2: \quad Set Mid $=($ Lower $+\mathbf{U p p e r}) / \mathbf{2}$
Step3: Call MergeSorting(Lower, Mid)
Step4: Call MergeSorting(Mid+1, Upper)
Step5: Call MergeLists(Lower, Mid, Upper)
[End If]
Step6: Return

Algorithm: Merges two sorted sub-lists into a single sorted list.
MergeLists(Lower, Mid, Upper)
Step1: Set Lb1 = Lower, Lb2 = Mid+1
Set Ub1 $=\mathbf{M i d}, \mathbf{U b} 2=$ Upper
Set Ub1 $=$ Mid, Ub2 $=$ Upper
Set $\mathbf{k}=\mathbf{1}$
Step2:Repeat Step3 While Lb1<Ub1 AND Lb2<Ub2
Step3: If $\mathbf{A}[\mathbf{L b} 1]<\mathbf{A}[\mathbf{L b} 2]$ Then
Set $\mathbf{B}[\mathbf{k}]=\mathbf{A}[\mathbf{L b} 1]$
Set $\mathbf{L b 1}=\mathbf{L b 1}+\mathbf{1}$
Set $\mathbf{k}=\mathbf{k}+\mathbf{1}$
Else
Set $\mathbf{B}[\mathbf{k}]=\mathbf{A}[\mathbf{L b} \mathbf{2}]$

Set $\mathbf{L b 2}=\mathbf{L b 2 + 1}$
Set $\mathbf{k}=\mathbf{k + 1}$
[End If]
[End Loop]
Step4: If Lb1>Ub1 Then
While Lb2<=Ub2
Set $\mathbf{B}[\mathbf{k}]=\mathbf{A}[\mathbf{L b} 2]$
Set $\mathbf{A}[\mathbf{L b} 2]=\mathbf{A}[\mathbf{L b} 2]+\mathbf{1}$
Set $\mathbf{k}=\mathbf{k}+\mathbf{1}$
[End Loop]
Else
While $\mathbf{L b} 1<=\mathbf{U b} 1$
Set $\mathbf{B}[\mathbf{k}]=\mathbf{A}[\mathbf{L b} 2]$
Set $\mathbf{A}[\mathbf{L b} 2]=\mathbf{A}[\mathbf{L b} 2]+\mathbf{1}$
Set $\mathbf{k}=\mathbf{k}+\mathbf{1}$
[End Loop]
[End If]

Else

While Lb1<=Ub1

 Set $\mathbf{B}[\mathbf{k}]=\mathbf{A}[\mathbf{L b} 2]$ Set $\mathbf{A}[\mathbf{L b} 2]=\mathbf{A}[\mathbf{L b} 2]+1$ Set $\mathbf{k}=\mathbf{k}+\mathbf{1}$[End Loop]
[End If]
Step5: Repeat For $\mathbf{k}=$ Lower to Upper
Set $\mathbf{A}[\mathbf{k}]=\mathbf{B}[\mathbf{k}]$
[End Loop]
Step6: Return

41 Analysis of Merge Sort

- In the first pass, sub-lists of size one are merged.
- In the second pass, the size of sub-lists being merged is 2 .
- In the $\mathbf{k}^{\text {th }}$ pass sub-lists being merged will be of size $\mathbf{2}^{(\mathbf{k}-1)}$.
- A total of logn passes will be performed over the data.
- Since, two files can be merged in linear time, each pass of merge sort takes $\boldsymbol{O}(\boldsymbol{n})$ time.
As there are $\log \boldsymbol{n}$ passes, the total time complexity is $\boldsymbol{O}(\boldsymbol{n}$ $\log n)$.
- Merge sort is not in-place algorithm as it requires extra space to store the sorted elements.
- Merge sort algorithm is stable as the replicated elements do not exchange their positions.

Shell sort

- Shell sort is a generalization of insertion sort.
- Shell sort is named after its inventor Donald Shell who developed the technique in 1959.
- Shell sort is in-place comparison sort.
- Shell sort is also known as diminishing increment sort.
- This is because, the gap between the elements to be compared decreases as the sorting algorithm runs until the last phase in which adjacent elements are compared with gap equal to one.

Basic Idea

- Set a gap \mathbf{h} that is smaller than the number of elements in the list and larger than 1.
- Group all the elements of the list in \mathbf{h} groups by putting elements that are \mathbf{h} positions away from each other into the same group.

Sort each group by exchanging locations of elements in the same group. Each group will have sorted elements and such a group is called \mathbf{h}-sorted.

- Following the idea with decreasing value of \mathbf{h} (value of \mathbf{h} may be taken any but smaller than previous \mathbf{h}) ending in 1 , will produce the list of sorted elements.

44
 Example

Consider a list of 12 elements :

1	2	3	4	5	6	7	8	9	10	11	12
64	85	20	55	09	17	97	88	49	71	27	30

considering the gap \mathbf{h} as 5,3 and 1 respectively,

Pass 1:The gap is $h=5$ and group is calling 5-sorting.
5-sorting performs the insertion sort on the five sub arrays $\mathrm{A}_{1}\left(\mathrm{a}_{1}, \mathrm{a}_{6}, \mathrm{a}_{11}\right), \mathrm{A}_{2}\left(\mathrm{a}_{2}, \mathrm{a}_{7}, \mathrm{a}_{12}\right), \mathrm{A}_{3}\left(\mathrm{a}_{3}, \mathrm{a}_{8}\right), \mathrm{A}_{4}\left(\mathrm{a}_{4}, \mathrm{a}_{9}\right), \mathrm{A}_{5}\left(\mathrm{a}_{5}, \mathrm{a}_{10}\right)$

1	2	3	4	5	6	7	8	9	10	11	12
64	85	20	55	90	17	97	88	49	71	27	30

5-sorting performs the insertion sort on the five sub arrays

$$
\mathrm{A}_{1}\left(\mathrm{a}_{1}, \mathrm{a}_{6}, \mathrm{a}_{11}\right), \mathrm{A}_{2}\left(\mathrm{a}_{2}, \mathrm{a}_{7}, \mathrm{a}_{12}\right), \mathrm{A}_{3}\left(\mathrm{a}_{3}, \mathrm{a}_{8}\right), \mathrm{A}_{4}\left(\mathrm{a}_{4}, \mathrm{a}_{9}\right), \mathrm{A}_{5}\left(\mathrm{a}_{5}, \mathrm{a}_{10}\right)
$$

- Rewriting the elements of five sub-arrays $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{~A}_{5}\right)$ column wise, we get five sub-lists as,

$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{4}}$	$\mathbf{A}_{\mathbf{5}}$
64	85	20	55	09
17	97	88	49	71
27	30			

- Now, apply the insertion sort on these five lists separately, we get

$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{4}}$	$\mathbf{A}_{\mathbf{5}}$
17	30	20	49	09
27	85	88	55	71
64	97			

The list of elements after $1^{\text {st }}$ pass becomes,

1	2	3	4	5	6	7	8	9	10	11	12
17	30	20	49	09	27	85	88	55	71	64	97

Pass 2:The gap is $h=3$ and group is calling 3-sorting.
3-sorting performs the insertion sort on the five sub arrays $\mathrm{A}_{1}\left(\mathrm{a}_{1}, \mathrm{a}_{4}, \mathrm{a}_{7}, \mathrm{a}_{10}\right), \mathrm{A}_{2}\left(\mathrm{a}_{2}, \mathrm{a}_{5}, \mathrm{a}_{8}, \mathrm{a}_{11}\right), \mathrm{A}_{3}\left(\mathrm{a}_{3}, \mathrm{a}_{6}, \mathrm{a}_{9}, \mathrm{a}_{12}\right)$

- Rewriting the elements of three sub-arrays $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right)$ column wise, we get three sub-lists as,

$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$
17	30	20
49	09	27
85	88	55
71	64	97

- Now, apply the insertion sort on these three lists separately, we get

$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$
17	09	20
49	30	27
71	64	55
85	88	97

The list of elements after $2^{\text {nd }}$ pass become,

1	2	3	4	5	6	7	8	9	10	11
12										
17	09	20	49	30	27	71	64	55	85	88
97										

Pass 3:The gap is $h=1$ and group is calling 1-sorting.

3-sorting performs the insertion sort on the five sub arrays
$\mathrm{A}_{1}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}, \mathrm{a}_{9}, \mathrm{a}_{10}, \mathrm{a}_{11}, \mathrm{a}_{12}\right)$ as shown below:

1	2	3	4	5	6	7	8	9	10	11	12
17	09	20	49	30	27	71	64	55	85	88	97

Now, apply the insertion sort on the single list, we get,

1	2	3	4	5	6	7	8	9	10	11
09	17	20	27	30	49	55	64	71	85	88
07										

51 . The choice of gap size sequence h is not fixed and can be chosen arbitrarily. We have considered the gap size sequence as 5,3 and 1 . Various researchers have suggested different gap size sequences.

- Donald Shell (the inventor of shell sort) proposed the gap size sequence as $\mathbf{F L O O R}\left(\mathrm{n} / 2^{\mathrm{k}}\right)$, for k being the integer starting with 2. The gap sequence comes out to be $n / 2, n / 4$, $\mathrm{n} / 8$, ,. 1.

Knuth proposed the gap size sequence as $\left(3^{k}-1\right) / 2$, for k being the integer. The gap sequence comes out to be 1 , 4,14, 40,121.

- Pratt proposed the gap size sequence as successive number of the form $\left(2^{\mathrm{p}} 3^{\mathrm{q}}\right)$. The gap sequence comes out to be $1,2,3,4,6,8,9,12 \ldots$

Algorithm of shell sort

Algorithm: Sort an array ' A ' of size ' n ' using Shell sort. The gap size is taken as original shell sequence i.e. $\mathbf{n} / 2$, n/4, n/8,... 1
Step 1: gap = n/2
// gaps being used are of shell sequence
Step 2: Repeat Steps 3 to 10 while gap>= $\mathbf{1}$
Step 3:
$\mathbf{i}=\mathbf{g a p}+1$
Step 4: \quad Repeat Steps 5 to 9 while $\mathrm{i}<\mathrm{n}$
Step 5:
Step 6:
Step 7:

$$
\begin{aligned}
& \text { Temp = A[i] } \\
& \mathbf{j}=\mathbf{i} \\
& \text { Repeat while } \mathbf{j}>=\text { gap AND } \\
& \text { A[j-gap] }>\text { Temp } \\
& \mathbf{A [\mathbf { j }] = \mathbf { A } [\mathbf { j } - \mathbf { g a p }]} \\
& \mathbf{j}=\mathbf{j} \text {-gap }
\end{aligned}
$$

[End Loop]
Step 8: $\quad \mathbf{A}[\mathbf{j}]=\mathbf{T e m p}$
Step 9:
$\mathbf{i}=\mathbf{i}+1$
[End Loop]
Step10: \quad gap $=\boldsymbol{g a p} / \mathbf{2}$
[End Loop]
Step11: Exit

54
 Analysis of shell sort

- Complexity of the shell sort is dependent upon the gap size sequence chosen.
- It has been empirically found that the shell sort performs better than insertion sort, bubble sort, and selection sort.
- The worst case complexity of the shell sort lies between $\mathbf{O}\left(\mathbf{n} \log _{2} \mathbf{n}\right)$ and $\mathbf{O}\left(\mathbf{n}^{2}\right)$ and on the average it is approximately $\mathbf{O}\left(\mathbf{n}^{1.25}\right)$.

Radix Sort

- Radix Sort is a Invention of Herman Hollerith in year 1887 while working on tabulating machines.
- The radix sort is non-comparison integer sort method in which the comparison of elements to be sorted is not performed irrespective to other methods.
- Different from other methods like bubble sort, insertion sort, selection sort in which elements are compared with each other to perform sorting . But in radix sort structure of element is taken care rather than comparing the elements ,the structure is taken care.
- Individual digits of each element are taken care.
- Individual digits share the same significant position and value.
- Radix sort is known to be integer sort method.
- Even then this is not limited to sorting integers only. Can be applied to floating point, alpha-numeric elements or any other type.

57 Types of Radix Sort

MSD Radix Sort

The sorting starts from most significant digit(from left most digit to right most digit).MSD radix sort can be applied to sorting of string.

LSD Radix Sort

The sorting from least significant digit(from right most digit to left most digit). LSD radix sort is applied to numeric number sorting.

58 Example

To understand radix sort , consider the following sets of numbers Example 1 :

$$
005,017,008,785,890,889,431,052,443,099,692
$$

The given elements are numbers LSD radix sort will be applied to sort elements in ascending order.
Three passes require to sorting elements because elements given to be three digit numbers.

First pass

- The digit at 1 's place is taken care.
- Elements are written according to sorted order of this least significant digit.

Second pass

- The digit at 10 's place is taken care.

Elements are written according to sorted order of this least 10's place digit.

Third pass

- The digit at 100 's place is taken care.
- Elements are written according to sorted order of this least 100's place digit.

60
 Example

			Pass $=1$			Pass=2			Pass=3		
0	0	5	8	9		0		5		0	5
0	1	7	4	3	1	0	0	8	0	0	8
0	0	8	0	5	2	0	1	7	0	1	7
7	8	5	6	9	2	4	3	1	0	5	2
8	9	0	4	4	3	4	4	3	0	9	9
8	8	9	0	0	5	0	5	2	4	3	1
4	3	1	7	8	5	7	8	5	4	4	3
0	5	2	0	1	7	8	8	9	6	9	2
4	4	3	0	0	8	8	9	0	7	8	5
0	9	9	0	8	9	6	9	2	8	8	9
6	9	2	0	9	9	0	9	9	8	9	0

${ }^{61}$ Algorithm of Radix sort

Algorithm: Sorts the elements using Radix sort. // b is the maximum number of digits in each element Step 1: \quad Repeat for $\mathbf{k}=\mathbf{1}$ to \mathbf{b}.

Step 2:
Sort the elements in a stable way looking at kth digit only.
[End Loop]
Step 3: Exit

62 Analysis of Radix sort

- The complexity of radix sort can be calculated depending upon the number of passes.
- The number of passes in the radix sort is as many as the number of digits in the elements.

In each pass \mathbf{n} elements are sorted looking at $\mathbf{k}^{\text {th }}$ digit only.

- Complexity of radix sort is $\mathbf{O}(\mathbf{b} \mathbf{n})$. Here n is Number of elements \& \mathbf{b} is maximum number of digit in each element.
- We can compare the complexity with $\mathbf{O}\left(\mathbf{n l o g}_{2} \mathbf{n}\right)$ and cannot guarantee that $\mathbf{O}(\mathbf{b} \mathbf{n})$ is less than

$\mathbf{O}\left(\underline{n} \log _{2} n\right)$.

- This is because if we have n-1 elements with a few digits but one element have more than \mathbf{n} digits, than the values of \mathbf{b} will becomes more than \mathbf{n} and complexity will become more than $\mathbf{O}\left(\mathbf{n}^{2}\right)$. So, if the number of digits is less in the elements then the radix sort performs well.

64 External Sorting

- External Sorting is the sorting technique that can handle huge amount of data.
- Data is as large that cannot be accommodated in Main memory. Instead data must reside in a slower external Memory.

The main concern with external sorting to minimize disk access.

- Usually, the external sorting is referred as file sorting.

Sorting Phase : chunks of data small enough that can fit . In main memory and read ,sorted using an internal sorting technique.

Merge Phase : the sorted sub files are combined into large file.

Output Phase :the merged files are written out to the external storage disk.

67 Example

Take example of sorting 12000 records which cannot be Accommodated in main memory as a whole simultaneously. To sort these records, external sorting technique is used.

Solution :

- First of all , these all records are divided into chunks Say chunks of 2000 records(which can be accommodated into the main memory) and apply the internal sorting method on all these 6 chunks .
- We get the 6 sorted sub files (each sub file contains 2000 sorted records) which are now sorted individually.
- Let these files are F1 having records 1 to 2000, F2 having records 2001 to 4000,F3 having records 4001 to 6000 and so on.
- Merge all these 6 sorted sub files starts. We use 2-way merge in which, we use a method of merging 2 input files at once.

70 Merge Pass 2:

First of all files F7 and F8 are merged to get a file say F10 which contains sorted records from 1 to 8000 and this file is written back to external storage media .
As only one file $\mathbf{F 9}$ remaining, so in this pass, we leave this file as it is. And now the problem is reduced to merge the two files F10 and F9.

Merge Pass 3:

Here , the files F10 containing records 1 to 8000 and file $\mathbf{F 9}$ containing records 8001 to 12000 are merged to create a single file which contains all the records 1 to 12000 which are now and this file is written back to external storage media.

